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Abstract. Quantum Calculations of binding energies and spatial distributions are carried out using Diffu-
sion Monte Carlo (DMC) methods for several bosonic helium clusters containing lithium and sodium atoms
as neutral impurities. The global interaction forces have been constructed via sum-of-potentials models
with accurate empirical potentials for the two-body (2B) forces, disregarding many-body (MB) effects on
such weakly interacting systems. The results clearly show that both impurities can bind to the helium
clusters but that they chiefly reside outside them and do not undergo microsolvation.

PACS. 34.30.+h Intramolecular energy transfer; intramolecular dynamics; dynamics of van der Waals
molecules – 36.40.Mr Spectroscopy and geometrical structure of clusters – 36.40.Qv Stability and frag-
mentation of clusters

1 Introduction

In the last few years the study of helium clusters of a very
broad range of sizes, and the behaviour of a correspond-
ingly broad variety of atomic and molecular dopants con-
tained by such varied droplets, has received considerable
attention both by chemists and physicists because of their
unique properties, determined in the main by quantum
effects [1,2]. They are in fact known to be the only clus-
ters that are liquid under all conditions of formation, due
to the very large zero-point motions of the He adatoms
which solidify only under pressure. It is therefore of in-
terest to get to understand how the various properties of
bulk liquid can emerge from those of the finite systems.

Thus, to study the spectral behaviour of atomic and
molecular dopants attached to such droplets has provided
in recent years a great deal of information by analysing
the dopant spectra in the infrared and the visible re-
gions [3–5]. Recent model theoretical studies of the micro-
solvated dopant molecules in either 4He or 3He droplets
have also provided very useful indications on the molecular
sources of spectral differences between bosonic/fermionic
environments [6].

All the studies carried out so far have clearly shown
that, due to the “softness” of the helium atoms, the liq-
uid environments of the droplets remain very sensitive
to their interaction with the dopant [1,2]. Thus, a pos-
itive ion surrounded by a shell of He atoms appears as
being strongly compressed as a result of electrostriction
effects [7,8], while a negative ion may be ejected by the
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droplet, thus residing largely on its outside [9]. As a fur-
ther example, a free electron injected in helium droplets
is capable of forming a large “bubble” of about 34 Å di-
ameter [10]. It is therefore of importance to be able to
relate as much as possible the experimentally found, or
theoretically predicted behaviour of such microsolvation
cases with the strength and features of the relevant inter-
molecular forces.

A case in point is provided by neutral alkali atoms at-
tached to helium droplets, where they can play the role
of the chromophoric dopants and their laser-induced flu-
orence (LIF) spectra can yield useful indicators on both
structural and dynamical properties [11–13]. More recent
calculations of the absorption spectra [14] for Li, Na and K
as dopants have provided the positions, relative intensities
and line widths of the absorption maxima as a function
of cluster size and found them to be in moderate agree-
ment with the existing experiments [15]. Those calcula-
tions were carried out using a pairwise, additive global
potential model and disregarded any effect from possible
MB contributions, as in the present study.

In the present work we thus intend to revisit the above
findings in a slightly different way by analysing in more de-
tail the quantum effects induced in He droplets: we shall
examine the trend of binding energy values along a se-
quence of bosonic helium clusters doped by Li and Na
atoms, respectively. We shall also analyse the similar trend
of their quantum structures and suggest ways to repre-
sent pictorially the possible locations of the alkali dopant
as the cluster grows, in order to show that our quantum
treatment unequivocally confirms the dopant atoms to be
placed on the outside of the cluster structures.
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To our knowledge, the relative locations of such weakly
bound atoms within He droplets has not been analysed
in such detail before, although calculations with different
methods have been done before as we shall discuss further
in the following.

Next section briefly outlines our computational
method of choice, the Quantum Diffusion Monte Carlo
(DMC) method, and discusses the pairwise modelling of
the global interactions, a simplification generally consid-
ered to be realistic enough for such weakly interacting
species [6–8].

Section 3 reports and discusses our present results
while Section 4 summarizes our conclusions.

2 Computing interaction and structures

2.1 The pairwise potential model

The largest contributions to the overall interaction poten-
tial within the cluster come from the isotropic forces be-
tween pairs of helium atoms, VHe−He(rij), and the spher-
ical potential between the alkali impurity and any of the
cluster adatoms, VAk−He(riAk). Further, MB contributions
associated with cooperative interactions, or between all
the adatoms among themselves, are disregarded in the
present study because of the negligible effects that such
additional forces are found to have for the very weakly
interacting species of the clusters [6–8].

We therefore write the overall potential as

Vtot(RAk,Ri) =
N∑

i<j

VHe−He(Ri)+
N∑

i=1

VAk−He(RiAk) (1)

where Rij = |Ri − Rj | and RiAk = |Ri − RAk|, where
the subscript Ak labels the alkali dopant atom. The two
pairwise potentials employed here have been already used
by us in a recent analysis of the ground-state properties
of the 4He2Li and 4He2Na systems [16]. They all originate
from previous studies where the combined use of ab-initio
results and empirical parameters was employed to obtain
very accurate description of the pair potentials in ques-
tion [17–19].

We report in Figure 1 a comparison of the chosen in-
teractions for the Li–He, Na–He and He–He systems. We
clearly see there that the interaction between the “sol-
vent” atoms is markedly stronger than those between
them and the alkali dopants: the minimum of the VHe−He

well depth occurs at closer distances (∼3 Å) than those
of the VAk−He potentials (∼6 Å) and it exhibits a deeper
well (∼8 cm−1) in comparison with that of the other two
potentials (∼2 cm−1). As as consequence of it, the onset
of the repulsive wall of the VHe−He interaction occurs at
shorter distances and appears to be less “soft” than the
interactions between helium and the alkali dopants. In an
earlier analysis of the dimer and trimer species [16], we
had already shown that the use of the above interactions
for the calculation of the ground state binding energies
yielded results which were in good accord with those from
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Fig. 1. Comparison of the empirical pairwise potentials em-
ployed in the present work. The He–He interaction is from ref-
erence [18] while the He–Ak potentials are from reference [19].

earlier studies: we have therefore employed the same set
of potentials for the present analysis.

2.2 The quantum DMC method

The DMC method has been extensively discussed be-
fore (see [20–22] and references therein). We therefore
refer the reader to that literature while this section
merely summarizes the main features of the method. The
key idea of the DMC method is the isomorphism be-
tween the solution of the time-dependent Schrödinger
equation and that of a reactive-diffusion equation with
anisotropic coefficients [20]. The Schrödinger equation for
an N -dimensional system can be written as

i�
∂Φ(R, t)

∂t
= HΦ(R, t)

= −
N∑

j

Dj∇2
jΦ(R, t)

+ [V (R) − Eref ]Φ(R, t), (2)

where R describes a vector in the N -dimensional space
and Dj = �

2/2mj. Eref is a constant which defines the
zero of the absolute energy scale and V (R) is the potential
function. After introducing the imaginary time τ = it, one
obtains the diffusion equation

∂Φ(R, τ)
∂τ

=
N∑

j

Dj∇2
jΦ(R, τ)

− [V (R) − Eref ]Φ(R, τ). (3)

In order to improve the efficiency of the method, and to
increase its accuracy, one usually selects a guiding func-
tion ΨT which approximates the true solution of equa-
tion (2). The introduction of this function leads to the
following diffusion-like equation for the product function
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f(R, τ) = ΨT (R)Φ(R, τ):

∂f(R, τ)
∂τ

=
[∑

j

(
Dj∇2

j −Dj∇j · Fj −DjFj · ∇j

)

− EL(R) + ER

]
f(R, τ), (4)

where EL(R) = ΨT (R)−1HΨT (R) is the local energy and
the quantum force Fj(R) = 2∇ lnΨT (R). As long as this
trial function is a reasonable approximation to the true
ground state, the asymptotic solutions of equation (4)
yield a mixed distribution function, which is now inde-
pendent of τ

f0(R) = ΨT (R)Φ0(R), (5)

where Φ0(R) is the true ground state wave function. The
exact ground state energy is thus obtained as the average
of the local energyEL(R) over the asymptotic distribution
function f(R, τ → ∞) ∼ f0(R). The latter is arrived at
by a stochastic propagation in imaginary time,

f(R′, ∆τ) =
∫
G̃I(R → R′, ∆τ)f(R, 0)dR, (6)

from an initial ensemble of multi-dimensional configura-
tion points, or ‘walkers’:

Ψ(R, τ = 0) ∼=
∑

i

δ(|R|i − |R|). (7)

G̃I(R) is the importance-sampled Green function [20,22],
and∆τ the discrete imaginary time propagation step. The
DMC approach employs a short-time expansion for the
importance-sampled Green function G̃I(R) [24]. We use
the Metropolis acceptance check for each attempted move
such that for arbitrary timesteps the number density of
walkers is given by Ψ2

T , while their weights are a stochastic
sample of the local value of Ψ/ΨT . This has been shown
to result in large reductions of the timestep error [24].

The trial function is given by a generalized product for
a bosonic cluster of N atoms containing an atomic impu-
rity [16]. We employ pairwise radial functions to represent
the correlations between all components of the cluster:

ΨT (R;p) =
N∏

i<j

ψij(Rij ;p)
N∏

i=1

χi(Ri;p′). (8)

Here Ri is the distance of the ith He atom from the spe-
cific adatom, Rij is the distance between helium atoms
i and j, and p, p′ denote the sets of adjustable param-
eters controlling each of the two different pair functions
ψij and χi, respectively. For the He–He pair, we used the
four-parameter function:

ψij(Rij) = exp

(
− p5

R5
ij

− p2

R2
ij

− p0 lnRij − p1Rij

)
, (9)

with size-dependent parameters pk optimized for
pure 4HeN [24]. For the He–Ak function we employed the

isotropic component of an analytic fit to the ground state
wavefunction of He–Ak dimer. This isotropic function has
the form

χi(Ri) = exp
(
− p′5
R5

i

− p′1Ri

)
. (10)

As the clusters grow in size, each trial function was mod-
ified in its parameters in order to follow the increased
spatial extension of each of them. The actual parameter
values can be obtained on request from the authors.

The ground state energy E0 is obtained from averag-
ing the local energy EL(R) over the importance-sampled
distribution function f(R) in the asymptotic regime

〈EL〉 =
∫
EL(R)f(R, τ)dR∫

f(R, τ)dR

τ→∞−→
∫
Φ0(R)H(R)ΨT (R)dR∫
Φ0(R)ΨT (R)dR

≡ E0. (11)

The Monte Carlo walk converts the integrals over f(R)
into simple averages over the ensemble of walkers {Ri}
and their associated weights {wi} [22–26]:

〈A〉 ≈
∑M

i wiA(Ri)∑M
i wi

. (12)

The introduced bias for operators Â 	= H is expected to
be markedly reduced as the time propagation tends to in-
finity. Our present calculations have explicitly tested this
point by successively extending the total number of time
steps till convergence within the indicated error values.

The radial distribution of any atom-atom distance rel-
ative to the chosen reference frame is

Prad(R) =
1
n

n∑

i

〈
δ (|R|i − |R|)

R2

〉

walk

, (13)

where n = 1 for the Ak atoms and n = m for any of the
m 4He atoms in the cluster.

The radial distribution function can be easily con-
verted to the spherically averaged radial atomic density
distribution ρ(R)

ρ(R) =
n

4π
Prad(R), (14)

with n being the number defined above.
One can further obtain with the same procedure the

cosine distributions associated with θ, the latter represent-
ing any of the possible angles between the bonds among
the three atoms θijk, with the normalization condition

∫ 1

−1

Ptot(cos θ)d cos θ = 1. (15)

From the above one can also extract the direct angular
dependence, Ptot(θ), subject to the same condition

∫ π

0

Ptot(θ)dθ = 1. (16)
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Fig. 2. Computed cluster properties with the lithium dopant,
as a function of cluster size. Upper left panel: total binding en-
ergies (in cm−1 as a function of No. of He atoms). Upper right
panel: single-He evaporative energies (Etot(N) − Etot(N − 1))
as a function of cluster size. Lower left panel: radial density
distributions (normalized to the No. of He atoms) showing he-
lium distances from the geometric center of each cluster. Lower
right panel: radial density distributions for the dopant lithium
atom.

We have also employed distance vectors which describe
distributions from the geometric center of each cluster,
Rgc, defined as

Rgc =
∑N

i=1 Ri + RAk

NHe + 1
(17)

which helps one to see more clearly the displacement of
the dopant atom from the center of the cluster formed by
the solvent atoms.

3 Results and discussion

The calculations were carried out using the trial functions
discussed in the previous section. We employed each indi-
vidual timestep δτ of about 25 atomic units and propa-
gated out for a total of about 5000 steps, depending on the
size of the cluster. The total number of blocks in the Monte
Carlo propagation was around 2000 and each replica in-
cluded about 2000 walkers. The total propagation in time
was 25×5000×2000 atomic time units. The final correla-
tion length [24] was always close to 1.00 and never larger
than 1.10. It was found that both cases of Li and Na as
dopant required similar sets of numerical parameters.

The results of Figure 2 show, in the upper panel, the
dependence of the total energies on cluster size for the
case of the lithium dopant (left quadrant) while the gen-
eral trend of single-particle (He) evaporative energies are
shown by the right quadrant of the upper panel. The same
set of results for sodium are shown by the two upper quad-
rants of Figure 3. All quantities carry a percentage error
which remains, on average, below 1%.
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Fig. 3. Same computed quantities as those reported in Figure 2
but for the sodium-doped clusters.

Table 1. Computed energy values for the lithium-doped clus-
ters as a function of the number of 4He atoms.

N Etot (cm−1) EHe
evap (cm−1) Etot/N ELi

evap (cm−1)

2 –0.041±0.005 0.041±0.005 –0.02 0.03

3 –0.23±0.01 0.19±0.01 –0.08 0.14

4 –0.63±0.01 0.40±0.02 –0.16 0.24

5 –1.25±0.02 0.62±0.03 –0.25 0.34

6 –2.05±0.02 0.80±0.04 –0.34 0.44

7 –2.99±0.03 0.94±0.05 –0.43 0.51

8 –4.05±0.03 1.06±0.06 –0.51 0.55

9 –5.30±0.03 1.25±0.06 –0.59 0.66

10 –6.57±0.06 1.27±0.09 –0.66 0.66

12 –9.35±0.17 1.39±0.23 –0.78 0.60

14 –12.89±0.06 1.77±0.23 –0.92

16 –16.37±0.01 1.74±0.07 –1.02

18 –20.07±0.01 1.85±0.02 –1.11

20 –24.10±0.11 2.01±0.12 –1.20

25 –34.67±0.19 2.11±0.30 –1.39

30 –46.01±0.25 2.27±0.44 –1.53

It is interesting to make the following comments in re-
lation to the energetics shown by the present calculations:
the total binding energies appear to smoothly increase for
both dopants as cluster size increases. We therefore see no
sign of shell formation but rather the uniform, liquid-like
structures of pure helium clusters as discussed earlier by
Lewerenz [27]. In other words, both sets of calculations in-
dicate that the much weaker dopant interaction with the
solvent atoms hardly contributes to keeping the cluster to-
gether and the latter essentially tends to behave as a pure
cluster of helium atoms [27]. This point is also shown by
the energies associated to evaporating one helium atom
from the cluster: the values are very similar for both sys-
tems and resemble those of the pure helium clusters [27].

The fourth columns of Tables 1 and 2 also report
the average energy change per 4He atoms as the cluster
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Table 2. Same computed energy indicators as those given by
Table 1 but here for the case of the sodium-doped clusters.

N Etot (cm−1) EHe
evap (cm−1) Etot/N ENa

evap (cm−1)

2 –0.08±0.01 0.08±0.01 –0.04 0.07

3 –0.33±0.02 0.25±0.03 –0.11 0.25

4 –0.78±0.02 0.44±0.04 –0.19 0.39

5 –1.41±0.02 0.64±0.04 –0.28 0.51

6 –2.23±0.03 0.81±0.05 –0.37 0.61

7 –3.17±0.06 0.94±0.09 –0.45 0.69

8 –4.22±0.07 1.05±0.13 –0.53 0.72

9 –5.28±0.15 1.06±0.22 –0.59 0.64

10 –6.30±0.27 1.02±0.42 –0.63 0.40

12 –9.55±0.13 1.62±0.40 –0.80 0.81

14 –13.21±0.06 1.83±0.19 –0.94

16 –16.74±0.06 1.76±0.12 –1.05

18 –20.48±0.08 1.87±0.14 –1.14

20 –24.54±0.10 2.03±0.18 –1.23

25 –34.75±0.15 2.04±0.25 –1.39

30 –46.45±0.13 2.34±0.28 –1.55

increases in size (Etot/N) and one sees that such en-
ergy values tend to become essentially the same for both
clusters as N increases. This means, in fact, that such
changes become rapidly driven by the He–He interactions
and therefore get to be independent of the dopant atom
considered. Further comparison with estimates [28] of such
a quantity in pure 4He, provides in fact a value of about
1.6 cm−1 for pure clusters with N around 30, a value
which is close to the present one reported by the 4th
columns of the tables.

The binding energies of the dopant atoms to the clus-
ter are also given in the last column of both tables, where
comparison was possible only for the smaller clusters for
which binding energies are available from previous calcula-
tions [27]: these calculations use the same He–He potential
form [18]. One clearly sees there that the binding is much
smaller than for the solvent atoms and reaches its largest
value for N = 10 of about 0.91 K. Previous calculations
that employed different pairwise potential report a value
for clusters of the same size (see Fig. 5 of Ref. [14]) which
is around 0.8 K and therefore in good agreement with our
findings. They also suggest an asymptotic, bulk value of
about 4.0 K: earlier density functional calculations [29]
gave a value around 10 to 15 K for the binding energies of
alkali atoms, but had neglected zero-point-energy contri-
bution. We therefore see that the present results appear
to agree better with the more accurate approach followed
by [12].

If one now turns to the radial probability distributions
computed for both doped clusters with respect to their
geometric centers, see equation (17), we clearly see from
both sets of lower panels reported by Figures 2 and 3 that
the Ak dopants reside well outside the region where most
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Fig. 4. Upper panels: computed distributions for the angle
centered at the lithium atom and between any two helium

adatoms (ĤeLiHe). Left panel: probability distributions as a
function of cluster size and over the angular range in degrees.
Right panel: same distribution but given as a function of cos θ.
Lower panels: computed atom-atom distance probability distri-
butions as a function of cluster size. Left: distances between he-
lium atoms; right: distances between lithium and helium atoms
(radial distributions are all normalized to NHe atoms).

of the helium atoms appear to be located. We also clearly
see from both figures the strong spatial delocalization of
all partner atoms and therefore the dominant role played
by quantum effects on structural features. In spite of it,
however, both lithium and sodium atoms distance them-
selves from the geometric center much more than the “sol-
vent” helium atoms. This finding clearly confirms the re-
sults from entirely different (path-integral Monte Carlo)
(PIMC) earlier calculations on the same systems [14],
where it was also found that both Li and Na atoms should
be considered as residing on the surface of the soft, liquid-
like helium droplet. It is also interesting to note that in
earlier work on the energetics of solvation [28] a dimension-
less parameter λ was introduced, obtained from a simple
model that included data like the surface tension, the clus-
ter density and the features of the potential between the
dopant and the helium atoms, taken as a simple pairwise
potential [28]. Ancillotto et al. [29] therefore predicted
that atoms with λ values of less than 1.9 would reside
on the liquid surface, while those with larger λ values are
expected to reside inside. Using the data [14] of bulk liquid
helium and the energy parameters of the present pairwise
potential, we find that λ = 0.95 for Li and λ = 0.85 for
Na. Such values are therefore consistent with what has
been found with present DMC calculations.

Other useful quantities regarding the cluster structures
are provided by the probability distributions related of
either the angular values between any three particles or
the direct atom-atom distances between any two particles.
Both sets of quantities are reported in Figure 4 for the
lithium-doped calculations and in Figure 5 for the sodium-
doped ones. The marked similarity of behaviour between
the two systems is really striking.
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Fig. 5. Same computed quantities as those reported in Fig-
ure 4 but for the sodium-doped clusters.

The angular distributions shown by those figures, in
fact, confirm once again the very “floppy” structures of
the clusters. They also show that, as the clusters grow big-
ger, the angles from the dopant atoms become increasingly
smaller since their corresponding distances from any two
4He atoms become larger while the average distance be-
tween those two atoms are reduced as the cluster becomes
spatially larger as a whole but it creates a denser distribu-
tion (i.e. shorter He–He distances) of solvent atoms, a fact
which thus explains the behaviour of the angular distri-
butions from our calculations. In other words, both the Li
and Na dopants show, from their angle distributions, that
they monotonically move outside the clusters of helium
atoms and therefore the corresponding probability distri-
butions of all possible angles centred on the Ak atom and
between any pair of He atoms move towards the smallest
possible values; it is also interesting to note that the distri-
butions pertaining to both dopants behave very similarly
since the factor controlling such distributions is the migra-
tion of the alkali atom outside increasingly more compact
and homogeneous helium clusters.

This type of behaviour is also visible from the data pre-
sented in the two sets of lower panels of Figures 4 and 5.
We report there the probability distributions of the dis-
tances between pairs of 4He atoms (left panels) and of
the distances between the alkali atom and any of the he-
lium atoms. One clearly sees that the He–He distributions
are very similar in both cases and also closely resemble
the distributions of pure helium clusters computed ear-
lier on with very similar methods [27]. In other words,
our calculations are creating in both situations essentially
pure 4He clusters that are chiefly stabilized by the dom-
inant pairwise interactions between “solvent” atoms. On
the other hand, the distances between either of the al-
kali atoms and any of the the 4He adatoms in each clus-
ter distribute themselves around maxima which are much
greater and which describe a situation where the Li and
Na impurity resides outside the cluster.

In Figures 6 and 7 we further show the plots of the
maxima of the radial distributions, either using atom-
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dopants. The radial values pertain to atom-atom distances (left
panel) or to distances from the geometric center (right panel).
The bars for each maximum value represent a “delocalization
index”, i.e. the FWHM extracted from each probability distri-
bution maxvalue.
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Fig. 7. Same set of data as those shown by Figure 6 but here
referring to clusters with sodium dopants. See previous caption
form meaning of symbols.

atom distances (left panels) or atom distances from the
geometric center (right panels).

In each of the figures, which list the distance maxima
for the smaller clusters, we also report a sort of “delocal-
ization bar” which indicates the value of the full distri-
bution width at half maximum (FWHM) obtained from
each radial distribution for which the maximum value is
plotted in the figures. We therefore obtain a sort of “broad
band” of radial delocalization for both the solvent atoms
and the dopants: the picture we get is thus one of a “soft”
liquid cluster over which floats the corresponding alkali
atom. This is again in good accord with the predictions
from previous calculations [14,28] and from experimental
findings [4,11,15].
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4 Present conclusions

In the present work we have carried out quantum Diffu-
sion Monte Carlo calculations for a series of small clusters
of bosonic helium that contain an alkali atom as a neu-
tral dopant. We have considered the cases of lithium and
sodium as alkaline impurities and have described the over-
all interaction according to equation (1), i.e. as a sum of
pairwise interaction potentials that disregard as negligible
the many-body effects originating from multiple interac-
tion contributions. Such an approach has been the one
most commonly employed for bosonic helium clusters in-
teraction with neutral dopants (e.g. see Refs. [4,7,9]) and
the results have usually been found in good accord with
the experimental estimates [1].

The energetics of the calculations clearly show the
marked dominance of the interactions between “solvent”
atoms over the strength of the solvent-helium interactions,
i.e. one sees that the total energies smoothly increase for
small clusters in a fashion which is similar for both dopants
and strongly reminiscent of the behaviour for pure 4He
clusters [27]. The binding energies of helium atoms to the
clusters also turn out, as expected, to be larger than those
of the dopant’s atoms and rapidly become independent of
the alkali atom present in the clusters. Finally, our esti-
mate of the alkali atom’s binding energy to the largest
cluster for which a comparison was possible (N = 10)
turn out to be very close to that given by earlier, accurate
quantum calculations [14] which used an entirely different
approach and interaction potentials.

The analysis of the radial probability densities ob-
tained from the present calculations further allowed us
to draw the following conclusions:

1. the distributions of the distances of both the dopant
and the solvent adatoms from the geometric centers
of the clusters, as defined by equation (17), clearly in-
dicate that the alkali atoms reside mainly outside the
cluster, the latter being mostly formed by the bosonic
helium atoms;

2. our calculations show that the He–He distances rapidly
acquire distribution shapes and values which are very
close to the pure helium clusters while the alkali atoms
show radial distributions that are much larger and tend
to increase with the size of the cluster. The analysis of
the corresponding angular distributions, for the angles
centered at the alkali atoms within the clusters, also
indicates that those distributions become increasingly
narrower as N increases and further show a marked
maximum around θ = 20. This feature suggests, there-
fore, that the dopant atom is moving further outside
the cluster as N increases and its distances from any
pair of helium “solvent” atoms are in the main much
larger than the corresponding distances between any
of two helium atoms among themselves;

3. by considering the dependence of the maximum values
of the radial distributions on the N values (see Figs. 6
and 7) for both the alkali and the helium atoms, we
were able to show that the dopants are indeed “float-
ing” on the 4He clusters and invariably appear to re-

main outside the small aggregates we have analysed in
the present study.

It is also interesting to note that recent DMC calcula-
tions[30] on the energetics of the Li2(1Σ+

g ) as a dopant
in small helium clusters indicate their binding energies to
be even smaller than those reported for the monomer in
Table 1. Thus, it is reasonable to suggest that the lack of
observation of its excitation spectra [15] could be due to its
fast evaporation on cluster break up. On the other hand,
our recent calculations on the Li2(3Σ+

u ) indicate stronger
binding [31], which would make its stability upon excita-
tion more likely to occur.

In conclusion, we feel that the present calculations has
indeed confirmed within a quantum approach the sugges-
tions coming from the analysis of the experiments [4,5,11]
and also the finding from earlier calculations [14,29] which
employed an entirely different approach.
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